Improvement of tendon repair using muscle grafts transduced with TGF-β1 cDNA.
نویسندگان
چکیده
Tendon rupture is a common injury. Inadequate endogenous repair often leaves patients symptomatic, with tendons susceptible to re-rupture. Administration of certain growth factors improves tendon healing in animal models, but their delivery remains a challenge. Here we evaluated the delivery of TGF-β1 to tendon defects by the implantation of genetically modified muscle grafts. Rat muscle biopsies were transduced with recombinant adenovirus encoding TGF-β1 and grafted onto surgically transected Achilles tendons in recipient animals. Tissue regenerates were compared to those of controls by biomechanical testing as well as histochemical and immunohistochemical analyses. Healing was greatly accelerated when genetically modified grafts were implanted into tendon defects, with the resulting repair tissue gaining nearly normal histological appearance as early as 2 weeks postoperatively. This was associated with decreased deposition of type III collagen in favour of large fibre bundles indicative of type I collagen. These differences in tendon composition coincided with accelerated restoration of mechanical strength. Tendon thickness increased in gene-treated animals at weeks 1 and 2, but by week 8 became significantly lower than that of controls suggesting accelerated remodelling. Thus localised TGF-β1 delivery via adenovirus-modified muscle grafts improved tendon healing in this rat model and holds promise for clinical application.
منابع مشابه
TGF-Β1 Transduced Mesenchymal Stem Cells Have Profound Modulatory Effects on DCs and T Cells
Background: Mesenchymal stem cells (MSCs) and transforming growth factor-β1 (TGF-β1) molecules are well known for their immunomodulatory properties and their function in tissue regeneration and remodeling. Objectives: To evaluate the interaction of TGF-β1 engineered MSCs with T cells and dendritic cells (DCs) and their modulatory effect on the immune response. Methods: MSCs and DCs were generat...
متن کاملThe Role of Gene Therapy in Cartilage Repair
The key principle of gene delivery to articulations by direct intra-articular injection is to release complementary DNA(cDNA)-encoding medical products that will lead to maintained, endogenous production of the gene products withinthe articulation. In fact, this has been accomplished for both in vivo and ex vivo gene delivery, using several vectors,genes, and cells in some animal models. Some c...
متن کاملTGF-β1 enhanced myocardial differentiation through inhibition of the Wnt/β-catenin pathway with rat BMSCs
Objective(s): To investigate and test the hypotheses that TGF-β1 enhanced myocardial differentiation through Wnt/β-catenin pathway with rat bone marrow mesenchymal stem cells (BMSCs).Materials and Methods: Lentiviral vectors carrying the TGF-β1 gene were transduced into rat BMSCs firstly. Then several kinds of experimental methods were u...
متن کاملTGF-β1 Decreases Plasmin-Mediated MMP Activity in Flexor Tendon Cells: Implications for Scarless Tendon Repair
Introduction Flexor tendon injuries caused by deep lacerations to the hands are a challenging problem for tissue engineers. Such injuries often result in debilitating adhesions, scar tissue that prevents the normal gliding motion of the flexor tendons through their lubricating synovial sheaths, preventing the hands from opening and closing. Evidence exists that tendon adhesions as well as scarr...
متن کاملA Convenient Method for Solubilization and Refolding Recombinant Proteins: An Experience from Recombinant Mouse TGF-β1
Background: The production of recombinant proteins in Escherichia coli is one of the most valuable achievements in biotechnology, with many therapeutic and diagnostic applications; however, the aggregation and misfolding of proteins that result in the formation of insoluble inclusion bodies is a disruptive factor in this process. Various solubilization and refolding methods can be used to impro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European cells & materials
دوره 23 شماره
صفحات -
تاریخ انتشار 2012